Estimating Error Bounds for Ternary Subdivision Curves / Surfaces
نویسندگان
چکیده
We estimate error bounds between ternary subdivision curves/surfaces and their control polygons after k-fold subdivision in terms of the maximal differences of the initial control point sequences and constants that depend on the subdivision mask. The bound is independent of the process of subdivision and can be evaluated without recursive subdivision. Our technique is independent of parametrization therefore it can be easily and efficiently implemented. This is useful and important for pre-computing the error bounds of subdivision curves/surfaces in advance in many engineering applications such as surface/surface intersection, mesh generation, NC machining, surface rendering and so on.
منابع مشابه
Estimating error bounds for binary subdivision curves/surfaces
We estimate error bounds between binary subdivision curves/surfaces and their control polygons after k-fold subdivision in terms of the maximal differences of the initial control point sequences and constants that depend on the subdivision mask. The bound is independent of the process of subdivision and can be evaluated without recursive subdivision. Our technique is independent of parameteriza...
متن کاملA Controllable Ternary Interpolatory Subdivision Scheme
A non-uniform 3-point ternary interpolatory subdivision scheme with variable subdivision weights is introduced. Its support is computed. The C and C convergence analysis are presented. To elevate its controllability, a modified edition is proposed. For every initial control point on the initial control polygon a shape weight is introduced. These weights can be used to control the shape of the c...
متن کاملDifferentiability of a 4-point Ternary Subdivision Scheme and its Applications
Hassan et al. proposed a 4-point ternary interpolatory scheme with smaller sizes of the templates for the local averaging rules and with higher order smoothness property compared to most of the existing binary ones. It can be C-continuous when the subdivision parameter is chosen in a certain range. In this paper, we further investigate its differentiable properties to extend its application in ...
متن کاملUnification and Application of 3-point Approximating Subdivision Schemes of Varying Arity
In this paper, we propose and analyze a subdivision scheme which unifies 3-point approximating subdivision schemes of any arity in its compact form and has less support, computational cost and error bounds. The usefulness of the scheme is illustrated by considering different examples along with its comparison with the established subdivision schemes. Moreover, B-splines of degree 4and well know...
متن کاملSymmetric Ternary Interpolating C Subdivision Scheme
A ternary 4-point interpolating subdivision scheme is proposed that generates the limiting curve of C1 continuity. Performance of the proposed subdivision scheme is improved using a tension parameter. The improved subdivision scheme generates a family of C1 limiting curves for certain range of tension parameter. Laurent polynomial method is used to investigate the derivative continuity of the s...
متن کامل